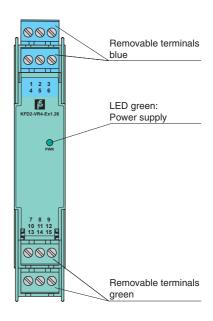
Features

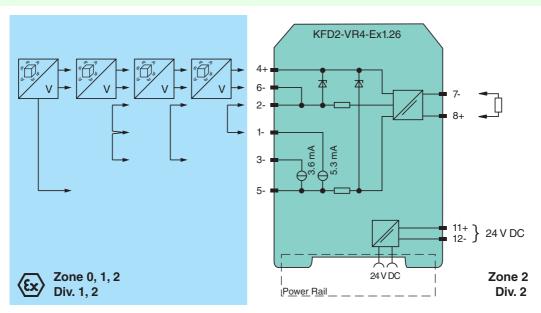
- 1-channel isolated barrier
- 24 V DC supply (Power Rail)
- Voltage input 0 V ... -20 V
- · Vibration sensor inputs
- · Voltage/current field supply
- Voltage output 0 V ... -20 V


Function

This isolated barrier is used for intrinsic safety applications. It provides a floating output to power a vibration sensor (e. g., Bently Nevada) or accelerometer in a hazardous area and transfers the voltage signal from that sensor to the safe area.

The device is designed to provide a voltage or current supply to the vibration sensor. Depending on connection the barrier provides 3.6 mA, 5.3 mA, or 8.9 mA supply current for 2-wire sensors, or 18 V at 20 mA for 3-wire sensors.

Assembly


Front view

Connection

Electrical isolation	
Input/Output	safe galvanic isolation acc. to IEC 60079-11, voltage peak value 375 V
Input/power supply	safe galvanic isolation acc. to IEC 60079-11, voltage peak value 375 V
Directive conformity	
Directive 94/9/EC	EN 60079-0:2006, EN 60079-11:2007, EN 61241-11:2006, EN 60079-15:2005, EN 50303:2000
International approvals	
UL approval	
Control drawing	116-0316 (cULus)
IECEx approval	IECEx BAS 05.0078 IECEx BAS 10.0085X
Approved for	[Zone 0] [Ex ia] IIC, [Ex iaD], [Ex ia] I Ex nA II T4
General information	
Supplementary information	EC-Type Examination Certificate, Statement of Conformity, Declaration of Conformity, Attestation of Conformity and instructions have to be observed where applicable. For information see www.pepperlfuchs.com.

Installation

If the transducer and probe are isolated from ground, the cable screen may be left unconnected at this end but must be securely insulated. If the transducer circuitry is connected or decoupled to ground the screen must be securely grounded.

In general, please follow the recommendations of the transducer makers.

Cable screens should normally be grounded in the gland where the cable enters the barrier cabinet. If the cabinet doors are likely to be left open while transceivers are in use nearby, it is permissible to ground the cable screens to the DIN rail on which the barriers are mounted, but note that this may affect the R.F.I. immunity of other apparatus in the cabinet.

Function

Vibration monitoring sensors with 2-wire connection:

2-wire accelerometers and velocity indication devices are supplied with a fixed current and indicate what they are sensing by varying their own supply voltage - often by ±5 V about a quiescent level of about 10 V. Those sensors are connected to terminals 4 and 6 with a link between terminals 2 and 1 (5.3 mA) or terminals 2 and 3 (3.6 mA) or terminals 2 and both 1 and 3 (8.9 mA).

The terminal 5 circuit has 2 constant sources of current connected to it which are brought out on terminals 1 at 5.3 mA and 3 at 3.6 mA. That means that a 1 k Ω resistor, for example, connected between terminals 4 and 1 would have 5.3 mA flowing in it, connected between terminals 4 and 3 would have 3.6 mA flowing in it and connected between terminals 4 and both 1 and 3 would have 8.9 mA flowing in it.

Example:

As an example, a 2-wire accelerometer requiring a minimum of 4 mA supply current and changing its own supply voltage by 100 mV for each "g" that it experiences would be connected between terminals 4 and 6 with a link between terminals 2 and 1. In that condition there may be around 10 V between terminals 4 and 6 under quiescent conditions. If it were capable of indication up to 50 g in each direction then the voltage between terminals 4 and 6 would vary between 5 V (indicating +50 g) and 15 V (indicating -50 g).

Vibration monitoring sensors with 3-wire connection:

Commonly 3-wire analogue proximity sensors are used to indicate shaft position and can "see" movements due to vibration which they indicate as a varying voltage level on the 3rd wire. Those sensors are connected to terminals 4, 5 and 6 with power supplied through terminals 4 and 5 and the signal connected to terminal 6. For a 3-wire sensor taking 10 mA, terminal 5 would be at approximately -21 V with respect to the common terminal 4 and the signal on the 3rd wire, connected to terminal 6, would be able to vary over the 0 to -19 V, or so, with respect to the common.

Terminal 4, the most positive terminal on the field side, is regarded as "common". There is an open circuit voltage of about 24 V DC between terminals 4 and 5 but terminal 5 has a resistance of about 300 Ω in series with it so the voltage falls to about 21 V at 10 mA and about 18 V at 20 mA. DC voltages at terminals 6 and 2 (referred to the "common") are repeated at terminal 7 using terminal 8 as the "common" on the safe side of the unit.

Accessories

Power feed module KFD2-EB2

The power feed module is used to supply the devices with 24 V DC via the Power Rail. The fuse-protected power feed module can supply up to 150 individual devices depending on the power consumption of the devices. A galvanically isolated mechanical contact uses the Power Rail to transmit collective error messages.

Power Bail UPR-03

The Power Rail UPR-03 is a complete unit consisting of the electrical inset and an aluminium profile rail 35 mm x 15 mm. To make electrical contact, the devices are simply engaged.

Profile Rail K-DUCT with Power Rail

The profile rail K-DUCT is an aluminum profile rail with Power Rail insert and two integral cable ducts for system and field cables. Due to this assembly no additional cable guides are necessary.

Power Rail and Profile Rail must not be fed via the device terminals of the individual devices!